шјес cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2018

A LEVEL (NEW) CHEMISTRY - UNIT 3 2410U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 3: PHYSICAL AND INORGANIC CHEMISTRY

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao	$=$	correct answer only
ecf	$=\quad$ error carried forward	
bod	$=\quad$ benefit of doubt	

bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1.				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$	1			1		
2.			$\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}$	1			1			
3.	(a)		$6 \mathrm{NaOH}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{NaClO}_{3}+5 \mathrm{NaCl}+3 \mathrm{H}_{2} \mathrm{O}$	1			1			
	(b)		disproportionation where the same element is both oxidised and reduced	1			1			
4.			(white precipitate and) steamy fumes	1			1		1	
5.			$0.0093 \mathrm{~mol} \mathrm{dm}^{-3} \quad$ (1) $2.36 \mathrm{~g} \mathrm{dm}^{-3} \quad$ (1)		2		2	1		
6.			(Gibbs free energy is negative) as entropy increase of solution overcomes endothermic enthalpy change		1		1			
7.			pH between 2 and 6.5 (1) ammonium ion dissociates to release H^{+}ions (1)		2		2			
			Section A total	5	5	0	10	1	1	

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8.	(a)			any two of following observations for (1) each - both release misty or steamy fumes - only sodium bromide gives orange fumes / orange solution - only sodium bromide gives pungent smell (of sulfur dioxide) bromide is more easily oxidised than chloride / sulfuric acid is a strong enough oxidising agent to oxidise bromide but not strong enough to oxidise chloride	2	1		3		2
	(b)	(i)	$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}$		1		1			
		(ii)	$\begin{align*} & K_{\mathrm{a}} \times[\mathrm{HF}]=\left[\mathrm{H}^{+}\right]^{2} \tag{1}\\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ } 0.100 \times 7.20 \times 10^{-4}=0.00849} \tag{1}\\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.07 \tag{1} \end{align*}$		3		3	3		

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
9.	(a)					2			2		
	(b)			ligands cause d-orbitals to split into three lower and two higher energy levels (1) electrons absorb energy and are promoted to a higher energy level (1) colour seen is the colours not absorbed (1)	3			3			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)			white precipitate (1) silver chloride forms / silver ions cause a precipitate with chloride (1) solution turns pink (1) removal of chloride causes equilibrium to shift to left (1)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	4		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(d)	(i)	$\begin{align*} & f=5.79 \times 10^{14} \\ & E=h f=3.84 \times 10^{-19} \tag{1}\\ & E=231 \tag{1} \end{align*}$		3		3	3		
	(ii)	value above 600 nm as this is absorbed by chloro but not aqua / value below 560 nm as this is absorbed by aqua complex but not chloro		1		1		1	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10.	(a)	(i)		inert pair effect becomes more significant down the group	1			1		
		(ii)	$\mathrm{PbO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$		1		1			
	(b)	(i)	$1^{\text {st }}$ order with respect to hydrogen ions (1) $1^{\text {st }}$ order with respect to tin ions / $0^{\text {th }}$ order with respect to iron(III) ions (1) $\begin{equation*} \text { rate }=k\left[\mathrm{H}^{+}\right]\left[\mathrm{Sn}^{2+}\right] \tag{1} \end{equation*}$		1	1	3	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		
		(ii)	$k=\text { rate } /\left[\mathrm{H}^{+}\right]\left[\mathrm{Sn}^{2+}\right]$ ecf from rate equation given in part (i) $\begin{equation*} k=0.14 \tag{1} \end{equation*}$		2		2	2		
		(iii)	not correct - must give a sensible reason (1) as the rate determining step should include one hydrogen ion / one tin ion / no iron(III) ion (1) ecf from rate equation given in part (i)			1 1	2			
	(c)	(i)	removing samples from the reaction mixture at set intervals and then stopping the reaction / adding large volume of water	1			1		1	
		(ii)	$\begin{aligned} & \text { reacting ratio } 5 \mathrm{Fe}^{2+}: 1 \mathrm{MnO}_{4}^{-} \\ & \text {concentration }=0.0558 \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$		2		2	2		
			Question 10 total	2	6	4	12	6	1	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
11.	(a)			profile with start and end at same energies and activation energy of $58 \mathrm{~kJ} \mathrm{~mol}^{-1}$ allow tolerance ± 1 small square each way for peak maximum		1		1		
	(b)	(i)	$k=A e^{-E_{a} / R T}$ accept $\ln k=\ln A-\frac{E a}{R T}$	1			1	1		
		(ii)	$\begin{equation*} e^{-E a / R T}=1.19 \times 10^{-4} \tag{1} \end{equation*}$ ecf possible from part (i) $\begin{equation*} E_{\mathrm{a}}=22.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{equation*}$ activation energy is lower so this catalyst is more effective ecf from activation energy calculated			3	3	2		
	(c)		$\begin{align*} & \Delta_{\mathrm{r}} H^{\rho}=2 \times \Delta_{\mathrm{f}} H^{\rho}\left(\mathrm{H}_{2} \mathrm{O}\right)-2 \times \Delta_{\mathrm{f}} H^{\rho}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right) \tag{1}\\ & 2 \Delta_{\mathrm{f}} H^{-}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=(2 \times-286)-(-98)=-474 \\ & \Delta_{\mathrm{f}} H^{\ominus}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=-237 \tag{1} \end{align*}$		1 1		2	1		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(d)				positive because the reaction forms a gas (and gases have a higher entropy than liquids)		1				
(e)	(i)	I	A $\mathrm{HCl} / \mathrm{H}^{+}(\mathrm{aq})\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ B platinum $/ \mathrm{Pt}$ (electrode)	1			1		1	
		II	electrons flowing from standard hydrogen electrode to dichromate half cell		1		1		1	
		III	salt bridge completes circuit without allowing solutions to mix	1			1		1	
		IV	this makes the reading less positive/smaller (must give reason to gain this mark) (1) increase in concentration of chromium(III) ions will shift equilibrium to the left (1)			1 1	2			

			5-6 marks Identifies six ions correctly (in addition to the carbonates); bright yellow precipitate is used to identify the presence of both iodide ions and lead(II) ions; the presence of copper(II) ions is linked to either the pale blue colour or the reaction with iodide. The candidate constructs a relevant, coherent and logically structured account including key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary is used accurately throughout. 3-4 marks Identifies four ions correctly (in addition to the carbonates); valid reason is given for at least two of copper(II) ions, iodide ions and lead(II) ions The candidate constructs a coherent account including many of the key elements of the indicative content. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound. 1-2 marks Identifies three ions correctly (in addition to the carbonates); valid reason is given for at least one of copper(II) ions, iodide ions and lead(II) ions The candidate attempts to link relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary. 0 marks The candidate does not make any attempt or give an answer worthy of credit.						
			Question 12 total	1	1	6	8	0	8

UNIT 3: PHYSICAL AND INORGANIC CHEMISTRY

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	5	5	0	10	1	1
8.	7	7	0	14	4	4
9.	5	8	5	18	7	3
10.	2	6	4	12	6	1
11.	3	7	8	18	4	3
12.	1	1	6	8	0	8
Totals	23	34	23	80	22	20

