wjec cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2018

A LEVEL (NEW) CHEMISTRY - UNIT 4 1410U40-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

	0	tion	Marking dataila			Marks a	vailable		
	Ques	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1.	(a)				1		1		
	(b)		[−] CN accept CN [−]	1			1		
2.			butanoic acid accept methylpropanoic acid / pentanedioic acid		1		1		
3.			2 mol NH ₃ from 1 mol amide T 0.060 mol from 0.030 mol amide T M_r of the amide 3.90/0.030 = 130 (1) M_r 'R' = 130 - 88 = 42 therefore C ₃ H ₆ / CH ₂ CH ₂ CH ₂ (1)		1	1	2	1	

0	otion	Marking dataila			Marks a	vailable		
Que	estion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
4.	(a)	$ \begin{array}{c} \begin{array}{c} H & NH_2 \\ & \\ -C & -C \\ & \\ H & H \end{array} \end{array} $		1		1		
	(b)	2-aminopropanoic acid exists as zwitterions / $CH_3CHNH_3^+COO^-$ (1) it has strong ionic character therefore much stronger forces between molecules than the other acids (1)		2		2		
5.		275.4 dm ³ gaseous material from 222 g RDX (1) therefore 1 m ³ from 222 \times 1000 / 275.4 = 806 answer must be given to 3 sig figs (1)		1	1	2	2	
		Section A total	1	7	2	10	3	0

Section B

	0	4.00	Merking detaile			Marks a	available		
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
6.	(a)	(i)	C ₈ H ₁₆ O	1			1		
		(ii)	NaOH(aq) / [−] OH(aq) (1)						1
			nucleophilic substitution (1)	2			2		
		(iii)	accept any of following acidified dichromate(VI) acidified potassium dichromate(VI) H^+ , $Cr_2O_7^{2^-}$ acidified manganate(VII) acidified potassium manganate(VII) acidified permanganate H^+ , MnO_4^-	1			1		1
	(b)	(i)	CHI ₃	1			1		1
		(ii)	possible formulae $CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$		1	1	2		

Question	Marking details			Marks a	available			
		AO1	AO2	AO3	Total	Maths	Prac	
(c) (i)	accept any of following sodium tetrahydridoborate(III) sodium borohydride NaBH ₄ lithium tetrahydridoaluminate(III) lithium aluminium hydride LiAIH ₄		1		1		1	
(ii)	by following the disappearance of the colour using a colorimeter			1	1		1	
(d)	e.g. 99 \rightarrow CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CO ⁺ / C ₅ H ₁₁ CO ⁺ / CH ₃ COCOCH ₂ CH ₂ ⁺ 71 \rightarrow CH ₃ COCO ⁺ 43 \rightarrow CH ₃ CO ⁺ / C ₃ H ₇ ⁺ award (2) for all three correct award (1) for any one/two correct			2	2			
<i>(e)</i> (i)	OH award (1) for correct chain length award (1) for terminal primary alcohol		2		2			
(ii)	accept any of following lithium tetrahydridoaluminate(III) lithium aluminium hydride LiAIH ₄	1			1		1	
	Question 6 total	6	4	4	14	0	6	

	0		Merkine deteile			Marks a	vailable		
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
7.	(a)	(i)	$ \begin{array}{c} CI \\ + NO_2 \\ + NO_2 \end{array} $						
			both curly arrows needed (1) correct structure of intermediate (1)	1	1		2		
		(ii)	electrophilic substitution	1			1		
	(b)		lone pair of electrons on the nitrogen atom(s)	1			1		
	(c)	(i)	orange / red solid	1			1		
		(ii)	the derivatives formed using 2,4-DNPH have suitable melting temperatures for identification / precise melting temperatures			1	1		1
	(d)		dissolve the (impure) oxime in a minimum volume (1) hot methanol / warm methanol (1) water bath / electrical heater (1)		1	1			
			allow to cool (1) filter off oxime and dry (1)	1			5		5

0	4100	Marking dataila			Marks a	vailable		
Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(e)		(broad) peak at 3200-3550 cm^{-1} due to O—H bond present in the oxime and not in the amide (1)						
		peak at 1650-1750 cm^{-1} due C=O bond present in the amide and not in the oxime (1)						
		peak at 3300-3500 \mbox{cm}^{-1} due to N—H bond present in the amide and not in the oxime (1)		3		3		
		Question 7 total	6	6	2	14	0	6

	0		Meriking deteile			Marks a	vailable		
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
8.	(a)		$F_3CCI \rightarrow F_3C^{\bullet} + CI^{\bullet}$		1		1		
	(b)	(i)	the higher the ratio of HF:CH ₂ Cl ₂ the higher the yield of CH_2F_2			1	1		
		(ii)	$n(CH_2F_2) = 0.0356$ (1)					1	
			mass of $CH_2F_2 = 0.0356 \times 52.02 = 1.85$ (1)		2		2		
			ecf possible from incorrect M_r						
	(c)	(i)	high pressure because there are more (gaseous) moles on the left than on the right	1			1		
		(ii)	high temperature as the endothermic reaction needs heat for the position of equilibrium to move to the right	1			1		
		(iii)	separation can be achieved by (fractional) distillation (1) reduce the temperature of the mixture to below –30°C and let the mixture warm up slowly (1,1,1,2-tetrafluoroethane will distil off first and can be condensed in a cold trap) (1)			2	2		2

Question	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
<i>(d)</i> (i)	each end of the C=C double bond has two different groups bonded to it	1			1		
(ii)	electrophilic addition	1			1		
	(intermediate) carbocations / carbonium ions have similar stabilities / similar reactivities / similar activation energies / are formed at similar rates			1	1		
(iii)	$\begin{array}{c} F\\H\\H\\C\end{array} = C - {}^{*}C\\C\\F_{3}\end{array} \qquad \begin{array}{c} F\\H\\C\\F_{3}\end{array} \qquad \begin{array}{c} F\\H\\C\\F_{3}\end{array} \qquad \begin{array}{c} F\\H\\C\\C\\F_{3}\end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \qquad \begin{array}{c} H\\C\\C\\F_{3}\end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \end{array} \qquad \begin{array}{c} H\\C\\F_{3}\end{array} \end{array} \qquad \begin{array}{c} H\\C\\F\\C\\F\\C\\F\\C\\F\\C\\F\\C\end{array} \end{array} \end{array} $ \qquad \begin{array}{c} H\\C\\F\\C\\F\\C\\F\\C\\F\\C\\F\\C\end{array} \end{array} \end{array} \qquad \begin{array}{c} H\\C\\F\\C\\F\\C\\F\\C\\F\\C\\F\\C\end{array} \end{array} \end{array} \qquad \begin{array}{c} H\\C\\F\\C\\F\\C\\F\\C\\F\\C\end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} H\\C\\F\\C\\F\\C\\F\\C\\F\\C\end{array} \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} H\\C\\F\\C\\F\\C\\F\\C\\F\\C\end{array} \end{array} \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}		2		2		
(iv)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1		1		
	Question 8 total	4	6	4	14	1	2

	Overetien				Marks a	available		
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
9.	(a)	 Indicative content percentage of chlorine in this compound is 32.1% which is consistent with that of 2,4-D colourless gas with NaHCO₃ indicates compound is a carboxylic acid n(NaOH) is 1.85 × 10⁻³ mol mole ratio is 1:1 therefore only one COOH group number of moles of compound in 25.0 cm³ is also 1.85 × 10⁻³ mol therefore 1.85 × 10⁻² in 250 cm³ <i>M</i>_r of compound is 221 which is consistent with that of 2,4-D test results consistent with structure of 2,4-D no chloride ions on reflux with NaOH therefore chlorine atoms are bonded directly to the ring, not in alkyl side-chains no white precipitate with aqueous bromine therefore not a phenol aqueous bromine not decolourised therefore no C=C double bonds spectral data consistent with that of 2,4-D ¹H NMR spectrum of this compound would show three peaks; aromatic (area of 3), —CH₂— (area 2), O—H (area 1) ¹³C NMR of this compound would show eight peaks as it has 8 different carbon environments 					2	
		 take its melting temperature and compare to a book value mix a sample with some actual 2,4-D, and take its melting temperature – see if the value is unchanged 	2	2	2	6		4

Ownerthere	Marking details	Marks available								
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac			
	 5-6 marks All information has been used and interpreted correctly, good account of melting temperature determination The candidate constructs a relevant, coherent and logically structured account including key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary is used accurately throughout. 3-4 marks Most of the information has been used and interpreted correctly The candidate constructs a coherent account including many of the key elements of the indicative content. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound. 1-2 marks Some of the information has been used correctly The candidate attempts to link relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary. 0 marks The candidate does not make any attempt or give an answer worthy of credit.									

0			Merking dataila			Marks a	vailable		
Ques	stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
<i>(b)</i>	(i)		$CH_3 - C \xrightarrow{0} + NaOH \longrightarrow CH_3 - C \xrightarrow{0} + CH_3OH$		1		1		
	(ii)	I	88		1		1	1	
		II	H - C O O O O O O O O O O O O O O O O O O		1				
			ester must contain $H - c$ group for it to reduce Tollens reagent (1)			1	2		
	(iii)	Ι	60		1		1	1	
		II	if relative molecular masses are different, the number of moles present in the chromatogram is not directly related to the mass of each component			1	1		
	(iv)		A has weaker intermolecular forces therefore (less energy is needed to overcome these forces and) it has a lower boiling temperature			1	1		
	(v)		2-methylbut-1-ene			1	1		
			Question 9 total	2	6	6	14	4	4

0			Marking details				Marks available								
Que	estion			Marking det	alis		AO1	AO2	AO3	Total	Maths	Prac			
10. <i>(a)</i>					1	1									
			Stage	Reagent used	Structural formula of product										
			1	$\frac{\text{KBr} / \text{H}_2\text{SO}_4}{\text{or SOCI}_2 / \text{PCI}_5}$	CH ₃ CH ₂ CH ₂ Br CH ₃ CH ₂ CH ₂ CI										
			2	KCN	CH ₃ CH ₂ CH ₂ CN										
			3	LiAIH ₄			1	2		3					
		a	award (1) for e	ach correct row											
(b)	(i)	ę	odium nitrate(III) / nitrite and acid e.g.	HCI		1			1		1			
	(ii)	á	Accept other co	+ OH → C	N=N-OH +	HCI		1		1					
(C)		r		s true as HCI will be rem sition of equilibrium to the					1	1					

0						Marks available					
Que	stion	Marking details			A01	AO2	AO3	Total	Maths	Prac	
(d)		7.87 g of the amino acid gives 1470 cm^3 of N ₂ gas (1)									
	$n(N_2) = 1470 / 24.5 \times 1000 = 0.060$										
		therefore 0.060 mc	therefore 0.060 mol of the amino acid								
		molar mass of the	molar mass of the amino acid = $7.87 / 0.060 = 131$ (1)						2		
		R—CH(NH ₂)COOH	R—CH(NH ₂)COOH \rightarrow 131 and CH(NH ₂)COOH \rightarrow 74								
		therefore $R \rightarrow 13$	therefore $R \rightarrow 131 - 74 = 57$ (1)								
		it is a straight chair	it is a straight chain compound so R is $CH_3CH_2CH_2CH_2$								
		therefore amino ac	tid must be CH ₃ (CH ₂) ₃ C	CH(NH ₂)COOH (1)			2	4			
(e)	(i)	2-methylpropane-1,3-dioic acid						1			
		accept 2-methylpro									
	(ii)										
		Protons	Splitting pattern	Relative peak area							
		-CH ₂ -CH ₂ -	singlet / no splitting	4							
		-C-H-	quartet	1							
		-CH ₃	doublet	3							
	award (1) for each correct row			3		3					
	Question 10 tota		3	8	3	14	2	1			

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	1	7	2	10	3	0
6.	6	4	4	14	0	6
7.	6	6	2	14	0	6
8.	4	6	4	14	1	2
9.	2	6	6	14	4	4
10.	3	8	3	14	2	1
Totals	22	37	21	80	10	19

1410U40-1 GCE A Level Chemistry - Unit 4 MS S18/DM