Surname

Centre Number

Other Names

GCSE – NEW

3410U20-1

CHEMISTRY – Unit 2:

Chemical Bonding, Application of Chemical Reactions and Organic Chemistry

FOUNDATION TIER

THURSDAY, 17 MAY 2018 - MORNING

1 hour 45 minutes

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	12			
2.	10			
3.	10			
4.	9			
5.	6			
6.	13			
7.	8			
8.	12			
Total	80			

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 5 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

© WJEC CBAC Ltd.

			Fxaminer
	(ii)	One reaction that takes place in the furnace is	only
		iron(III) oxide + carbon monoxide — Firon + carbon dioxide	
		<u>Underline</u> the element which is removed from the iron(III) oxide during the reaction. [1]	
		iron oxygen carbon	
(b) S	State	ements D , E and F show the three steps needed to prepare a sample of copper(II) ride in the laboratory. The steps are not in the correct order.	
	D	filter to remove excess copper(II) oxide	
	Е	leave the copper(II) chloride solution to evaporate at room temperature	
	F	add excess copper(II) oxide to dilute hydrochloric acid	
(Com	plete the flow chart by putting the letters in the correct order. [2]	
			3410U201
		first step last step	

3410U201 03

Complete the table by choosing the **letter A**, **B**, **C** or **D** which represents the structural formula of the named compounds. [2]

Name	Molecular formula	Structural formula
ethane	C ₂ H ₆	
propene	C ₃ H ₆	

07

Turn over.

*M*_r =

		9			
(ii)	The	energy given out can be calcu	ulated using the formula:		only
		energy given out = mass of wa	ater × 4.2 × temperature cha	inge	
	Use	the data given to calculate the	e energy given out when bur	ning methanol.	[2]
			Energy given out =		J
(iii)	Give	the letter of the correct concl	lusion for the student's inves	tigation.	[1]
	Α	all alcohols burn giving out th	he same amount of energy		
	В	the greater the number of ca the less energy is given out	arbon atoms in the alcohol m	olecule	
	С	the greater the number of ca the more energy is given out	arbon atoms in the alcohol m t	olecule	0U 201
	D	as the number of carbon a doubles	toms doubles the amount	of energy given	out ^{*8}
	Lette	er			
(iv)	Give	e the letter of the structural for	rmula of methanol, CH ₃ OH.		[1]
 HC 	H 	н но но 	H—O—H H—C—H	О Н—Н—Н С 	
	A	В	С	H D	
	Lette	er			
					10
09		© WJEC CBAC Ltd. (3410U20	D-1)	Turn ov	``

3. (a) Crude oil can be separated into simpler mixtures called fractions. These fractions contain hydrocarbon compounds called alkanes. **Table 1** shows information about some of the fractions obtained from crude oil by fractional distillation.

Fraction	Boiling point range (°C)	Number of carbon atoms present in the alkanes
petroleum gases	< 20	C ₁ -C ₄
petrol	30-75	C ₅ -C ₁₀
naphtha	70-170	C ₈ -C ₁₂
kerosene	170-250	C ₁₀ -C ₁₄
diesel oil	250-340	C ₁₄ -C ₂₄
lubricating oil	340-500	C ₂₁ -C ₃₀
fuel oil	490-580	C ₂₅ -C ₃₅
residue	>580	>C ₃₅

Table 1

Use only the information in Table 1 to answer parts (i)-(iii).

- Hexane has a boiling point of 68 °C. Give the name of the fraction which contains hexane. [1]
- (ii) One alkane is found in kerosene and in diesel. Give the number of carbon atoms in this alkane. [1]
- (iii) Give the number of carbon atoms in the alkane which has the **lowest** boiling point. [1]

Examiner only

Turn over.

(c) Plastic carrier bags are made from polythene. Each plastic carrier bag can take 500-1000 years to decompose and may never break down in landfill. Paper bags are not necessarily an environmentally friendly alternative. Manufacturing paper bags wastes a lot of natural resources. Even starch-based biodegradable bags use natural resources during their manufacture.

Supermarkets give customers a choice of buying single-use or re-usable polythene carrier bags.

Table 2 shows the number of both types of plastic bag sold in UK supermarkets from 2011 to 2013.

Year	2011 2012		2013	
	Number of bags (millions)			
Single-use bags	7977	8079	8455	
Re-usable bags	415	408	445	

Table 2

(i) State **one** environmental problem related to the disposal of **all** types of carrier bag. [1]

(ii) Calculate the percentage of plastic bags sold in 2013 that were single-use bags. [2]

Percentage =%

Examiner only

3410U201 13

10

(iii) Although more plastic carrier bags were sold in 2013 than 2012, the total **mass** of those bags changed from 70400 tonnes to 67300 tonnes.

Put a tick (\checkmark) in **two** boxes next to statements which could explain the reason for the change in mass. [2]

the bags were made the same thickness but from a less dense plastic

customers re-used their plastic bags more often

the bags were made from the same plastic but were thicker

the bags were made from the same plastic but were thinner

the bags were made the same thickness but from a more dense plastic

(b) The table shows the electronic structure of the elements present in water and hydrogen chloride.

15

Element	Electronic structure
hydrogen	1
oxygen	2,6
chlorine	2,8,7

The diagram shows the bonding in a water molecule.

Give the **letter** of the diagram which shows the bonding in a hydrogen chloride molecule. [1]

Letter

Turn over.

Examiner

17	
Every year thousands of acres of moorland are destroyed by fires in Wales. Firefighters use several methods to put out this type of fire.	Exan on
State and explain, in terms of the fire triangle, three methods that are used to put out moorland	
Tires. Each method must refer to a different part of the fire triangle. [6 QER]	

	Yield of ammonia (%)				
100	96.7	81.7	52.5	25.2	10.6
200	98.4	89.0	66.7	40.0	18.3
400	99.4	94.6	79.7	55.4	31.9

Use the information in the table to answer parts (i) and (ii).

(i) State what happens to the yield of ammonia as the temperature increases. [1]

(ii) One manufacturer carries out the Haber Process at 200 atm and 450 °C.

Underline the approximate percentage yield of ammonia formed under these conditions. [1]

10% 30% 40% 58%

Turn over.

1) / I	Amm nitrog betw	onia is used in the manufacture of nitrogenous fertilisers. One example of genous fertiliser is ammonium nitrate. Ammonium nitrate is formed by the reacter an acid and ammonia.	of a tion
	(i)	Complete the word equation by naming the acid used in this reaction.	[1]
		ammonia + ammonium nitrate	
	(ii)	When ammonium sulfate solution is warmed with sodium hydroxide solutio pungent gas is formed. Damp red litmus paper is used to test this gas.	n a
		I. Describe the change in colour of the litmus paper during the test.	[1]
		II. State the property of this gas which causes the colour change.	[1]
		III. Name the gas formed.	[1]
	(iii)	Nitrogenous fertilisers pollute streams and rivers. State how nitrogenous fertilis get into these waterways.	sers [1]
			······

BLANK PAGE

21

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

				_
8.	(a)	Whe is a v beca The	n a mixture of iron(III) oxide and aluminium powder (Thermit mixture) is heated, the violent reaction. The reaction is carried out in a tube surrounded by a mound of s ause the temperature reaches 2500 °C. A bead of iron is recovered from the sapicture below shows the reaction taking place in a darkened room.	ere and and.
	(i) Give the reason why the iron formed in the reaction is molten.			
		(ii)	Complete and balance the symbol equation for this reaction.	[2]
		(iii)	$Fe_2O_3 + 2AI \longrightarrow Fe_4$ State which of the substances is oxidised. Give the reason for your choice.	[1]
		(iv)	When a mixture of magnesium oxide and aluminium powder is heated, there is reaction.	s no
			List iron, magnesium and aluminium in order of reactivity. Most reactive	[1]
			Least reactive	

Examiner only

© WJEC CBAC Ltd.

(b) Some metals are more reactive than others. A more reactive metal displaces a less reactive metal from its compounds.

A student was given tin, iron, copper and zinc and solutions of the metal sulfates. Using a dropping pipette, she put a little of one of the sulfate solutions in four of the depressions of the dropping tile. She did this for each solution in turn. She then put a piece of metal foil in each of the solutions, as shown below.

(i) Put a tick (*J*) next to the question which **best** describes the investigation the student is carrying out. [1]

 Which displacement is the most exothermic?

 Which metal can displace copper from solution?

 What is meant by the reactivity series?

 What are the positions of the four metals in the reactivity series?

Turn over.

Examiner only

(c) Copper displaces silver from a solution of silver nitrate, AgNO₃, to form copper(II) nitrate solution.
 (i) Describe one change the student would see during this displacement reaction. [1]
 (ii) Write a balanced symbol equation for this reaction. [2]

END OF PAPER

27

BLANK PAGE

28

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

29

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examin only
		1

POSITIV	'E IONS	NEGATI	VE IONS
Name	Formula	Name	Formula
aluminium	Al ³⁺	bromide	Br ⁻
ammonium	NH_4^+	carbonate	CO ₃ ²⁻
barium	Ba ²⁺	chloride	CI
calcium	Ca ²⁺	fluoride	F
copper(II)	Cu ²⁺	hydroxide	OH⁻
hydrogen	H⁺	iodide	I-
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻
ron(III)	Fe ³⁺	oxide	O ²⁻
ithium	Li ⁺	sulfate	SO4 ²⁻
magnesium	Mg ²⁺		
nickel	Ni ²⁺		
ootassium	K ⁺		
silver	Ag ⁺		
sodium	Na ⁺		
zinc	Zn ²⁺		

	0	⁴ e ⁴		[%]	r Ston 6	31 e 4	22 n don 6	
	•	י ד פּיי	∾Z ⊕-	Arc A	X X 8 33	va X ⇒	° Kac	
	2		19 Fluorine 9	35.5 CI Chlorine 17	80 Br 35	127 lodine 53	210 At Astatine 85	
	9		16 O 8 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Polonium 84	
	S		14 N Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83	
	4		12 C Carbon 6	28 Silicon 14	73 Ge 32	119 Sn 50	207 Pb Lead 82	
	ო		11 B 5	27 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81	
щ					65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80	
TABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
DIC					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
RIO					59 Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium 77	
EPE	dno	u	1		56 F e Iron 26	101 Ruthenium 44	190 Osmium 76	Key
Ħ	Gro	Hydrog			55 Mn Manganese 25	99 TC Fechnetium	186 Re Rhenium 75	
					52 Chromium 24	96 MO Molybdenum 42	184 W Tungsten 74	
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	
					48 Ti Z22	91 Zr Zirconium 40	179 Hf Hafnium 72	
					45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	227 Ac Actinium 89
	2		9 Be Beryllium	24 Mg 12	40 Ca Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88
	-		7 Li 1 3	23 Na Sodium	39 ★ ★ Potassium 19	86 Rb 37	133 Cs 55	223 Fr Francium 87

Key relative atomic mass

 atomic number A_r Symbol Name Z Ι

